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Flight-test data of helicopters indicate that vibratory levels in the fuselage exhibit a wide spectrum of frequencies,

including a few below the rotor revolutions per minute. It is well known that helicopter blades operate in a complex

aerodynamic environment, involving time-varying heave, pitch, and pulsating oncoming flow. During operation,

some sections of the rotor blade undergo dynamic stall once in a revolution. This paper attempts to understand the

reason for the existence of several frequencies in the response of the fuselage and the possible cause for this observed

phenomenon by analyzing the effects of dynamic stall and aeroelastic couplings on the response of 2-D airfoil. The

ONERAdynamic stallmodel developedbyPetot ismodifiedby incorporating a higher-order rational approximation

of Theodorsen’s lift deficiency function. This improved model is shown to provide a better correlation with

experimental stall data. The response characteristics of a 2-D airfoil undergoing pitching and plunging motion in a

pulsating oncoming flow, simulating the response of a cross section of a helicopter rotor blade in forward flight are

analyzed. This study shows significant difference in the response characteristics of the airfoil for unsteady (dynamic

stall model) and quasi-steady aerodynamic models. It is observed that the nonlinear aerodynamics (dynamic stall

effects) in association with aeroelastic couplings above a certain level lead to a bounded chaotic motion of the airfoil.

Nomenclature

b = semichord
CD = unsteady drag coefficient
CdL

= linear static drag coefficient extrapolated to the stall
region

CM = unsteady moment coefficient
CmL

= linear static moment coefficient extrapolated to the stall
region

CZ = unsteady lift coefficient
CzL

= linear static lift coefficient extrapolated to the stall
region

C�k� = Theodorsen’s lift deficiency function
I� = moment of inertia about elastic axis
h = heaving motion of an airfoil
k = reduced frequency, !b=V
Kh = linear spring constant in heaving motion
K� = linear torsional spring constant in pitching motion
L = lift on airfoil
M = moment on airfoil about elastic axis, nose up is positive
M1 = Mach number
m = mass of airfoil
~S = area of airfoil
S� = static moment about elastic axis
t = time
V = oncoming velocity
~V = amplitude of time-varying part of oncoming velocity
V0 = mean value of oncoming velocity
�d2

= aerodynamic state in stalled region in drag equation
�m2

= aerodynamic state in stalled region in moment equation
�1 = aerodynamic state in unstalled region in lift equation
�2 = aerodynamic state in stalled region in lift equation

� = pitch angle, deg
~� = amplitude of time-varying pitch angle
�d = static stall angle
�eff = effective pitch angle
�0 = mean value of pitch angle
� = density of air
� = nondimensional time, Vt=b
� = elastic twist
� = input excitation frequency
! = excitation frequency
!h = natural frequency of the heaving motion
!� = natural frequency of the pitching motion

I. Introduction

T HE field of rotary-wing elasticity has been a very active area of
research during the last four decades [1]. There are still several

unresolved issues relating to blade loads and fuselage response in
forward flight [2]. One such problem is the existence of frequencies
below the rotor revolutions per minute, in the vibratory signature of
the fuselage, as observed in flight-test data of several helicopters [3].
In general, nonlinear effects are often cited as possible reasons for
any observed difference between theory and experiment [4]. The
major sources of nonlinearity in rotory wing aeroelasticity are due to
1) geometric nonlinearity associated with moderate deformation of
the rotor blade, and 2) aerodynamic nonlinearity due to dynamic
stall. This study is an attempt to understand the possible cause for the
observed phenomenon in flight-test data, by the formulation and
solution of a nonlinear aeroelastic response problem, involving
dynamic stall effects.

Rotor blade aerodynamicmodeling is highly complex due to time-
varying pitch, heave, pulsating oncoming flow, dynamic stall, and
wake effect. During forward flight, some sections of the rotor blade
undergo dynamic stall once in a revolution. Modeling of
instantaneous sectional lift, drag, and moment as functions of
pitching, plunging motion of the blade, variation in oncoming
velocity and inflow velocity is of paramount importance in
evaluating rotor aerodynamic loads. Therefore theoretical prediction
of fuselage response is largely dependent on the ability to accurately
model the rotor blade unsteady aerodynamic loads, in and out of stall.

Dynamic stall is a strong nonlinear unsteady aerodynamic effect
associated with flow separation and reattachment. Several
experimental [5–9] and theoretical [10–21] studies are available in
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the open literature on dynamic stall of a 2-D airfoil undergoing
pitching, plungingmotion and time-varying oncoming flow.Most of
the experimental studies on dynamic stall phenomenon have focused
on airfoils oscillating only in pitching motion [5,6]. Steady and
unsteady aerodynamic characteristics of several airfoil sections were
investigated by McCroskey et al. [6]. The parameters that were
varied under dynamic stall conditions were Mach number, reduced
frequency, mean angle, and amplitude of the oscillation. The
principal ranges of reduced frequency k, mean angle �0, and

amplitude of oscillation ~� were 0:01 � k � 0:20, �0 � 10 and

15 deg, and ~�� 2, 5, and 10 deg, respectively; and the effects of these
parameters were studied primarily at M1 � 0:30. A comparative
study on the effect of pitching and plungingmotions of an oscillating
airfoil has been reported by Carta [7] and Ericsson and Reding [8].
The experimental data show that for low angle of attack (about
�� 2 deg), pitching and plungingmotions have similar effect on the
lift and moment characteristics; however, for high angles of attack
(about �� 8 deg), considerable differences were observed. The
combined effect of time-varying oncoming velocity and pitching
motion on the aerodynamic behavior of a NACA 0012 airfoil was
investigated by Favier et al. [9]. In this study, a cam mechanism was
designed to generate variation in oncoming velocity and pitch angle

in the form V � V0 � ~V cos!t and �� �0 � ~� sin�!t���. Two
values of �0 (�0 � 6 and 12 deg) are chosen to analyze the airfoil
characteristics in attached and separated flow regimes. It may be
noted that there is no experimental study available in the open
literature on the combined effects of pitching, plunging, and
oncoming flow velocity variations on the aerodynamic character-
istics of a 2-D airfoil.

Theoretical models that attempt to predict the effects of dynamic
stall range from relatively simple semiempirical models to
sophisticated computational fluid dynamics (CFD) methods. One
of the earliest semiempirical models for dynamic stall was developed
by Beddoes [10]. In this model, aerodynamic lift and moment on
airfoil in attached flow regime is obtained from Duhamel
superposition integral using the Wagner indicial response function.
Corrections are applied to the Wagner function to account for the
effects of compressibility. Gangwani [11] developed a synthesized
airfoil method for the prediction of dynamic stall. To model the
airloads in attached flow, a Mach-scaled Wagner function is used in
the Duhamel superposition integral. In the separated flow regime, a
set of algebraic equations with several empirical coefficients is used
to represent the unsteady aerodynamic coefficients of the airfoil.
Leishman and Beddoes [12] have developed a model capable of
representing unsteady lift, pitching moment, and drag characteristics
of an oscillating airfoil in pitchingmotion using theWagner function
and flow separation point on the suction side of the airfoil, identified
by Kirchoff flow idealization. This model was later extended to
include heaving motion [13] and pulsating motion [14]. ONERA
(EDLin) model developed by Petot [15] describes the unsteady
airfoil behavior in both attachedflow and separatedflowof a pitching
airfoil using a set of nonlinear differential equations. Peters [16]
modified Petot’s model [15] by including the effects of heaving and
pulsating oncoming flow in the lift expression and referred to it as
“unified lift model.” Based on the observations of Peters [16], Petot
[17] proposed an extended dynamic stall model including the effects
of pitching, plunging, and oncoming flow velocity variations. The
coefficients of the differential equations of this extended model are
determined by parameter identification using experimental measure-
ments on oscillating airfoils. ONERA(BH) model developed by
Troung [18], uses a Vander Pol Duffing type nonlinear equation to
represent the separated flow conditions; however, in the attached
flow region, it retains the equation developed by Petot [17]. In [19], a
detailed description of the state of art in dynamic stall modeling has
been presented. Recently CFDmethods [20,21] are applied to predict
dynamic stall in airfoils. Because semiempirical stall models can be
easily integrated to aeroelastic analysis, ONERA and Leishman–
Beddoes dynamic stall models are used in the literature for
aeroelastic applications [22–27]. Depailler and Friedmann [28]
combined rational function approximation and ONERA stall model

to represent unsteady load in attached flow and separated flow
regimes, respectively, for the analysis of vibration in helicopters. In
[29,30], the authors have studied the effects of structural nonlinearity
and ONERA dynamic stall model on the response of a rotor blade.
They have shown that the necessary condition for the onset of chaotic
response is that the system must be near flutter boundary. When the
flutter speed is low, the chaoticmotion is determined by the structural
nonlinearity and for high flutter speeds, chaotic motion is dominated
by nonlinearity due to aerodynamic stall.

In this paper, ONERA(EDLin) dynamic stall model has been
analyzed in relation to Theodorsen’s and Greenberg’s unsteady
aerodynamic theories. Based on this analysis, an improved dynamic
stall model is proposed. It is shown that the improvedmodel provides
better correlation with experimental dynamic stall data. Sub-
sequently, a nonlinear aeroelastic problem of a 2-D airfoil is studied
to bring out the effects of dynamic stall and aeroelastic couplings on
the response characteristics of the airfoil.

II. Extended ONERA (EDLin) Dynamic Stall Model

The extended ONERA(EDLin) stall model [17] provides time
variation of lift, moment, and drag on an oscillating airfoil. The stall
model assumes that the lift, moment, and drag are acting at the
quarter-chord point. The unsteady lift acting normal to the resultant
velocity is given as
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The unsteady moment on the airfoil is given as
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The unsteady drag acting along the resultant velocity is given as

D� 1

2
� ~S�V2CdL

jW0=V
� �db _W0 � V�d2� (6)
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whereW0 andW1 are defined asW0 � V� _h=V � �� andW1 � b _�. _h
represents the heaving velocity at elastic axis.�CzjW0=V

,�CmjW0=V
,

and �CdjW0=V
are the difference between the linear static
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aerodynamic coefficient extrapolated to the stalled region to actual
static aerodynamic coefficient of lift, moment, and drag,
respectively, measured at an effective angle of attack

W0=V � _h=V � �. CmL
jW0=V

and CdL
jW0=V

are the static moment
and drag coefficients in linear regime measured at an effective angle

of attackW0=V � _h=V � �. It is to be noted that the effective angle
of attack is to be specified in degrees.

The various coefficients [17]‡ of the lift model [Eqs. (1–3)] are
given as
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The various coefficients of the moment model [Eqs. (4) and (5)]
are given as
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The various coefficients of the drag model [Eqs. (6) and (7)] are
given as
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The parameters d1, a0, am0
, ad0

, a1, am1
, ad1

, r0, rm0
, rd0 , r1, rm1

, rd1 ,
E1, Em1

, and Ed1
have to be determined by parameter identification

approach using experimental measurements on oscillating airfoils.
For an airfoil oscillating under unstalled conditions, Eq. (1) can be

simplified by taking �2 � 0 and �Cz � 0 as
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2
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This expression for lift can be split into two parts as

L� LNC � LC (9)
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Taking Laplace transform of Eq. (2) and substituting for �1 in
Eq. (11), the expression LC can be written as
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Assuming harmonic motion for the airfoil (i.e., setting Laplace
variable S� i!), taking lift curve slope @CzL

=@�� 2�, and
substituting forW0 andW1, the expressions for LNC and LC for low
Mach number can be written as (note: the angle � is changed from
degrees to radians)
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The expressions LNC and LC are, respectively, identical to the
noncirculatory and circulatory parts of the unsteady lift obtained by
Theodorsen [31], except for the lift deficiency function C�k�. In
Eq. (14), the underlined term represents a first-order rational
approximation toC�k�, which approximately satisfies the conditions
at k� 0, C�k� � 1 and k�1, C�k� 	 0:5. Higher-order rational
functions have been shown to provide excellent correlation to lift
deficiency function C�k�. A second-order approximation [32] to
exact Theodorsen lift deficiency function is given as

C�k� 	 A1�i!b=V�2 � A2�i!b=V� � A3

�i!b=V�2 � B2�i!b=V� � B3

(15)

where A1 � 0:50, A2 � 0:393, A3 � 0:0439425, B2 � 0:5515, and
B3 � 0:0439075. A comparison of first-order approximation and
second-order approximation [32] with exact Theodorsen lift
deficiency function [C�k� � F�k� � iG�k�] is shown in Fig. 1. It can
be seen that second-order rational approximation shows better
correlation with exact C�k� than the first-order approximation.
Replacing first-order approximation by the second-order rational
approximation in Eq. (14) and applying Laplace inverse transform,
the modified lift equations are obtained. They are given as
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Fig. 1 Theodorsen’s lift deficiency function.‡D. Petot, private communication, 2005.
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In the modified lift model, the aerodynamic state �1 is given by a
second-order differential equation [Eq. (17)], whereas original Petot
model has a first-order differential equation [Eq. (2)]. The modified
lift model will be shown to provide a better correlation with
experimental stall data in both stalled and unstalled conditions. In
this paper, the set of Eqs. (16–18) is referred to as “modified stall
model” and the set of Eqs. (1–3) is denoted as Petot stallmodel. There
is no change in the form of moment and drag equations, given by
Eqs. (4–7), respectively.

In the unstalled region, Petot model lift can be shown to reduce to
Greenberg’s theory. Replacing the first-order rational function by
exact lift deficiency function C�k� in Eq. (14), assuming

V � V0 � ~Vei!vt, �� �0 � ~�ei!�t, h� ~hei!ht, and substituting for
W0 andW1, the noncirculatory and circulatory lift expressions given
in Eqs. (13) and (14) can be written as
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Replacing C�k� using the frequency of the corresponding terms in
Eq. (20), and combining with Eq. (19), the unsteady lift expression
can be rewritten as
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This lift expression is identical to the expression derived by
Greenberg [33].

While performing an analysis of airfoil response, a comparative
study of dynamic stall and quasi-steady aerodynamic models has
been carried out to bring out effects of stall. Therefore, for the sake of
completeness, the quasi-steady lift andmoment (about quarter-chord
point) expressions are given as follows. These expressions are
obtained by setting C�k� � 1 in Greenberg’s unsteady lift and
moment expressions[33].
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III. Results and Discussion

The results of this study are presented in two sections:
1) generation and validation of unsteady aerodynamic coefficients
using the modified stall model, and 2) aeroelastic response of a 2-D
airfoil under going pitching and plunging motion in pulsating
oncoming flow.

Using the modified dynamic stall equations [Eqs. (16–18) for lift,
Eqs. (4) and (5) for moment, and Eqs. (6) and (7) for drag], time
variation of the aerodynamic coefficients are generated and
compared with experimental data for three different cases, namely,
1) pure pitching motion of an airfoil, 2) pure plunging motion of an

airfoil, and 3) pitching motion of an airfoil in a pulsating oncoming
flow. Results are also generated for combined pitching and plunging
motion in a time-varying oncoming flow, simulating the cross-
sectional motion of a helicopter rotor blade in operation.

A. Validation of Modified Stall Model

The aerodynamic coefficients are generated using the modified
stallmodel for pitch, plunge, and pulsating oncomingflow.The static
aerodynamic characteristics of a symmetric airfoil used in the present
analysis are given in the Appendix. The various parameters used to
generate the results are given as: for lift, d��0:04j�Czj;���
r

p � 0:20� 0:20�C2
z ; a� 0:30� 0:20�C2

z ;E��0:05�C2
z ; for

moment,dm � 0;
������
rm

p � 0:20� 0:20�C2
z ;am � 0:25� 0:10�C2

z ;
Em � 0:01�C2

z ; and for drag, �d � 0:003� � 0:04j�Czj;�����
rd

p � 0:20� 0:20�C2
z ; ad � 0:25; Ed ��0:015�C2

z . Blade
semichord is taken as b� 0:2 m and the speed of sound used for
calculating Mach number is assumed as 330 m=s.

The stall equations are converted into state-space form and fourth-
order Runge–Kutta integration scheme has been used for evaluating
the steady state response. The time step for integration is set at
0.00314 s and the initial conditions for aerodynamic states are
assumed to be zero. In evaluating the response, the equations
corresponding to stalled domain [Eq. (18) for lift, Eq. (5) formoment,
and Eq. (7) for drag] have to be included in the solution procedure as
soon as the effective pitch angle of the airfoil crosses the static stall
angle during its motion.

1. Pitching Motion

First a comparison of the lift coefficient generated using modified
dynamic stall model [Eqs. (16–18)] and Petot stall model [Eqs. (1–
3)] is made with the experimental data of an airfoil undergoing only
pitching motion. The airfoil is assumed to undergo a pitching motion
�� 15� 10 cos�0:1�� deg. The Mach number is M1 � 0:3. The
variation of lift coefficient for the two stall models are shown in Fig. 2
along with experimental data taken from [6]. The direction of
variation of lift coefficient is indicated by arrows. It can be seen that
the modified stall model proposed in this study provides a better
correlation with experimental data, particularly in the reattachment
zone represented by low values of CZ; however, it slightly
underpredicts the maximum value of CZ. It may be noted that the
results presented in the following are generated using the modified
stall model.

Keeping M1 � 0:3, the aerodynamic coefficients are generated
for various reduced frequencies (k� 0:03, 0.05, and 0.1) of the
pitching motion. The lift, moment, and drag coefficients generated
from the modified stall model are shown in Fig. 3, along with the
experimental data taken from [6]. The result shows that the modified
stall provides a reasonably good correlation with experimental data.
The correlation seems to be better for the case of lift than for moment
and drag.

2. Pitching and Plunging Motion

For an unsymmetrical airfoil (NACA 23010), the time-varying lift
and moment coefficients for pure pitching and pure plunging motion
in attached flow are generated. The aerodynamic data used for this
analysis are given in the Appendix. A comparison of the theoretical
results with the experimental data (taken from [13]) is shown in
Fig. 4a for pure pitching and Fig. 4b for pure plunging motion,

C
Z

(deg.)θ

       Modified Model 
 Ref. [17]

  Expt. Ref. [6]

 0.5

 1

 1.5

 2

 2.5

 10  15  20  25  30 0  5

Fig. 2 Modified stall model compared with experimental data and

Petot model: �� 15� 10 cos�0:1�� deg,M1 � 0:3.
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respectively. In the case of pure pitching motion, the pitch angle is
varied as �� 0:06� 5:05 sin�0:125�� deg. For the case of plunging
motion, a mean pitch angle is set at 0.26 deg and the effective pitch

angle is given by �eff � 0:26� _h=V, where h� �h sin�0:125��.
Mach number is taken as M1 � 0:4 and the reduced frequency is
k� 0:125. The results indicate that the modified stall provides a
reasonable/good correlation with experimental data for both lift and
moment coefficients.

3. Pitching Motion in Pulsating Oncoming Flow

In [9], experimental studies have been carried out on a symmetric
airfoil (NACA 0012) undergoing pitching motion in a pulsating
oncoming flow. The oncoming flow velocity is given by
V � 6�1� 0:356 cos�0:314��� m=s. The experiment was conducted
for two pitch angle variations, one pertaining to the motion in the
unstalled region, with �� 6� 6 cos�0:314���� deg and the
other in the stalled region given by �� 12� 6 cos�0:314��
�� deg. � represents the phase angle between oncoming flow
velocity and the pitching motion. Results are presented for the two
cases of phase angles, i.e., �� 0 and 180 deg. Figure 5 shows the
comparison between experimental and theoretical stall data of
unsteady lift coefficient. The results indicate that the modified stall
model provides a better correlation with experimental data for both
unstalled and stalled cases when�� 180 deg (Figs. 5b and 5d). On
the other hand, the correlation is not good for the case when ��
0 deg (Figs. 5a and 5c). The reason for the poor correlation for this
casemay be attributed to the deficiency of the stallmodel in capturing
the effect of the formation of a larger leading-edge bubble [9] as
compared to the case of �� 180 deg.

The variation of drag coefficient for pure pitching motion and
pitching motion in pulsating oncoming flow is shown in Figs. 6a and

6b respectively. The theoretical results show a very good correlation
with experimental data.

4. Combined Pitching and Plunging Motion in Pulsating Oncoming Flow

For the purpose of illustration, theoretical data are generated for an
airfoil (NACA 0012) undergoing combined pitching and plunging
motion in time-varying oncoming flow, simulating the condition of a
helicopter rotor blade cross section in operation. The data used for
these calculations are

�� �0 � �1 cos�!t���; h� �h sin�!t�
V � V0 � ~V cos�!t�; �h� 0:42 m; V0 � 100 m=s

~V � 39:6 m=s; b� 0:2 m; !� 25 rad=s; k� 0:05

�� 0 deg; Case�i� �0 � 6 deg

�1 � 6 deg; and Case�ii� �0 � 12 deg; �1 � 6 deg

The results are generated for two pitch angle variations, one
pertaining to low mean angle �0 � 6 deg, and the other
corresponding to high mean angle �0 � 12 deg. The variation of
aerodynamic coefficients are shown in Figs. 7a and 7b. Because there
are no experimental data available for comparison, these results are
presented for the sake of completeness and illustration.

B. 2-D Airfoil Response

The response of a 2-D airfoil undergoing pitching and plunging
motion in a pulsating flow, simulating the condition of a typical cross
section of a helicopter rotor blade in forward flight, is analyzed.
Figure 8 shows a model of a 2-D airfoil undergoing pitching and
plungingmotions. The coupled equations ofmotion can bewritten as
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m �h� S�
��� Khh��L I� ��� S�

�h� K���M (24)

where S� represents the inertia coupling.
The response of the airfoil is analyzed for different cases to bring

out 1) the effect of dynamic stall modeling in comparison to quasi-
steady approximation of Greenberg’s aerodynamic theory [i.e.,
C�k� ’ 1], and 2) influence of aeroelastic coupling (pitch-heave
coupling due to S�) in association with dynamic stall. In evaluating
the response of the airfoil, fourth-order Runge–Kutta integration
scheme with a time step �t� 0:00314 s, has been used. The
instantaneous moment and lift acting on the airfoil are evaluated
using Eqs. (4), (5), and (16–18), respectively. The response of the
airfoil is calculated iteratively until steady state solution is arrived.
The frequency contents of the response are obtained using Fast
Fourier Transform (FFT). The data used in the calculations
are m� 7:95 kg, I� � 0:115 kg 
m2, Kh � 4396:0 N=m, K��
734:2 N 
m, and b� 0:209 m. The input excitation frequency is
�� 22:82 rad=s (3.64 Hz). Input pitch angle � and oncoming flow
velocity are taken, respectively, as �� 12 � 6 cos��t� deg and
V � 113�1� 0:40 cos��t�� m=s. The uncoupled natural frequen-
cies of the system are !h � 3:74 Hz; !� � 12:72 Hz.

1. Uncoupled Response

In the uncoupled analysis, the aerodynamic center (A.C.), center
ofmass (C.G.), and elastic axis (E.A.) are assumed to be located at the
quarter-chord point of the 2-D airfoil. The response of the airfoil is
obtained using two aerodynamic models, namely, quasi-steady
aerodynamic model and modified stall model. Heave and torsional
responses for quasi-steady aerodynamic theory and their frequency
contents are plotted in Figs. 9a and 9b, respectively. The response for
modified stall model and their frequency contents are plotted in
Figs. 10a and 10b, respectively. The heave response obtained from
the quasi-steady aerodynamic theory contains two frequencies,
namely, 3.64 Hz and 7.27 Hz, whereas torsional response contains
three frequencies (3.64Hz, 7.27Hz, and 10.90Hz),which are integer
multiples of excitation frequency 3.64 Hz. Table 1 shows the
frequency contents and their magnitude of the uncoupled heave

response for quasi-steady andmodified stall aerodynamic theory. It is
observed that the amplitude of the heave response for the case of
modified stall model is three times greater than that for the quasi-
steady model. In the case of torsional mode, modified stall model
introduces additional harmonics (Table 2), as compared to quasi-
steady aerodynamics. The reason for the appearance of additional
higher harmonics may be attributed to the nonlinearity of the stall
model.
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Table 1 Uncoupled heave response for quasi-steady and modified stall

aerodynamic theory

Quasi-steady Dynamic stall

Frequency, Hz Magnitude, m Magnitude, m

3.64 0.23 0.77
7.27 0.05 0.11

Table 2 Uncoupled torsional response for quasi-steady and modified

stall aerodynamic theory

Quasi-steady Dynamic stall

Frequency, Hz Magnitude, rad Magnitude, rad

3.64 0.008 0.048
7.27 0.005 0.028
10.90 0.001 0.021
14.53 —— 0.014
18.20 —— 0.005
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Fig. 10 Uncoupled airfoil response for modified stall model.
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Lift and moment obtained from quasi-steady aerodynamics and
modified stall model are plotted for one cycle in Figs. 11a and 11b,
respectevely. The variation of lift coefficient shows that the
minimum occurs at 77 deg for quasi-steady aerodynamic theory, and
for modified stall model it is shifted to 95 deg. The peak value of the
lift coefficient for dynamic stall is lower than that corresponding to
quasi-steady aerodynamics. The stall model also introduces
additional harmonics in lift and moment coefficients.

2. Coupled Response

In the coupled analysis, heave-pitch coupling is introduced by
shifting the mass center from the elastic axis. Elastic axis and
aerodynamic center are located at quarter-chord point. The influence
of aeroelastic coupling on the airfoil response has been studied for
various values of S� by shifting the mass center aft and forward of
elastic axis. For the sake of conciseness, only few cases are discussed
in the following.

Figures 12–17 show the response and frequency contents along
with phase plane diagram for the heaving and pitching motion of the
airfoil for various aft locations of center of mass from elastic axis,
namely, 3, 4, and 5% of the chord. A comparison of these figures
shows that as the pitch-heave coupling is increased (i.e., by shifting
the center of mass aft of elastic axis), pitch and heave motions of
airfoil become qualitatively different. Increasing the coupling seems
to increase the distribution of frequency contents in the response
signal, as observed in Figs. 12, 14, and 16. The phase plane diagrams
(Figs. 13, 15, and 17) show that as the coupling is increased, the
motion of the airfoil changes from periodic to bounded chaotic
motion.

Table 3 shows the frequency distribution of the response and the
magnitude, for different cases of center of mass location from elastic
axis of the airfoil. It can be seen that the uncoupled (0% chord) and
the coupled (3%chord aft location of center ofmass from elastic axis)
have same frequency contents but different magnitudes. The
frequencies correspond to the excitation frequency of the input
3.64Hz and its higher harmonics.When the center ofmass location is
shifted to 4% chord aft of the elastic axis, the airfoil response shows
significant subharmonic (1.82 Hz which is half of input frequency
3.64 Hz) and superharmonic frequency contents. For the case of 5%
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Fig. 11 Comparison of quasi-steady lift and moment with modified

stall model lift and moment.
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chord aft location of center of mass from elastic axis, the response
contains several frequencies which are noninteger multiple of
excitation frequency, both below and above the excitation frequency.
The magnitudes of these additional frequency contents are
comparable to the magnitudes of the response at input excitation
frequency.

To verify whether the motion is truly chaotic or not, computations
were performed to study the effect of perturbation in initial condition
on the steady state response of the system. If the steady state response
is sensitive to perturbation in initial conditions, it represents chaotic
motion [34] and the Liaponov exponent provides a quantitative
measure of the chaotic motion. The response of the airfoil is
evaluated for two different sets of initial conditions, namely, 1) all
initial conditions are zero, and 2) perturbed initial condition with
��0� � 0:01 and other initial conditions are set to zero. The
magnitude of the difference in the response of the airfoil in pitch
(j�2 � �1j) and heave (jh2 � h1j) is plotted as function of time.
(Note: Subscript 1 represents the response corresponding to all zero
initial conditions, whereas subscript 2 represents the case
corresponding to perturbed initial condition.) If the steady state
response is independent of the perturbation in initial conditions (i.e.,
j�2 � �1jt!1 � 0, jh2 � h1jt!1 � 0), then it indicates periodic
response. On the other hand, if the response is sensitive to
perturbations in initial conditions, it represents chaotic motion [34].
Figure 18 shows the sensitivity of the response to initial conditions
for three cases of center ofmass locations. It is evident that the system
is insensitive to initial condition for the two cases of center of mass
location, namely, at 0 and 3% chord aft of elastic axis, as shown in
Figs. 18a and 18b, respectively. For the case of center of mass
location at 5% chord aft of elastic axis, the response of the system is
sensitive to the perturbation in initial condition as shown in Fig. 18c.
TheLiaponov exponent is obtained from the plots of ln j��2 � �1�=	j
and ln j�h2 � h1�=	j vs time, where 	 is the perturbation in initial
condition. The positive slope of the mean curve is defined as
Liaponov exponent and it represents the sensitivity of the response to
perturbation in initial conditions. If the mean slope reaches a steady
value, it indicates a bounded chaotic motion. From Fig. 19, it can be

Table 3 Frequency distribution of airfoil response with modified stall model and aeroelastic coupling

Frequency (Hz) Magnitude of heave response, m Magnitude of torsional response, rad

Aft location of C.G. from E.A. Aft location of C.G. from E.A.

0% 3% 4% 5% 0% 3% 4% 5%

0.40 —— —— —— 0.063 —— —— —— 0.009
1.59 —— —— —— 0.260 —— —— —— 0.013
1.82 —— —— 0.213 0.016 —— —— 0.019 0.002
1.89 —— —— —— 0.063 —— —— —— 0.003
2.18 —— —— —— 0.074 —— —— —— 0.003
3.08 —— —— —— 0.064 —— —— —— 0.003
3.64a 0.768 0.592 0.422 0.344 0.048 0.057 0.038 0.034
4.77 —— —— —— 0.084 —— —— —— 0.009
5.07 —— —— —— 0.237 —— —— —— 0.034
5.27 —— —— —— 0.659 —— —— —— 0.112
5.45 —— —— 0.533 0.143 —— —— 0.078 0.029
5.66 —— —— —— 0.106 —— —— —— 0.028
6.36 —— —— —— 0.041 —— —— —— 0.017
7.27a 0.113 0.132 0.048 0.033 0.028 0.027 0.036 0.039
7.66 —— —— —— 0.030 —— —— —— 0.021
8.95 —— —— —— 0.036 —— —— —— 0.021
9.10 —— —— 0.058 0.023 —— —— 0.041 0.008
10.54 —— —— —— 0.008 —— —— —— 0.016
10.90a 0.008 0.025 0.017 0.015 0.021 0.052 0.008 0.022
12.53 —— —— —— 0.015 —— —— —— 0.028
12.72 —— —— 0.015 0.007 —— —— 0.036 0.008
14.12 —— —— —— 0.011 —— —— —— 0.031
14.53a —— 0.008 0.006 0.003 0.014 0.024 0.007 0.020
16.35 —— —— 0.004 0.002 —— —— 0.020 0.013
18.20a —— —— 0.004 0.003 0.005 0.022 0.003 0.005
19.98 —— —— —— 0.002 —— —— 0.003 0.002

aIndicates excitation frequency of the input (3.64 Hz) and its higher harmonics.
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seen that both pitch and heave motion indicate bounded chaotic
motion, with Liaponov exponents 1.78 for pitch and 1.48 for heave.

These results show that dynamic stall (nonlinear aerodynamics) in
association with aeroelastic pitch-heave coupling above a certain
level can lead to bounded chaotic motion of the airfoil.

Further rearward shift of mass center (about 7% of the chord),
leads the system to become completely unstable. However, forward
shift of mass center always gives rise to a stable periodic response
similar to the uncoupled case. Additional results pertaining to
different locations of mass center can be found in [35].

IV. Conclusions

ONERA(EDLin) dynamic stall model has been analyzed in
relation to Theodorsen’s and Greenberg’s unsteady aerodynamic
theories. It is shown that ONERA(EDLin) dynamic stall model in the
unstalled region is identical to Theodorsen’s model, except that lift
deficiency function C�k� is approximated by a first-order rational
approximation. Replacing the first-order rational approximation by a
more accurate second-order rational approximation, a modified
dynamic stall model is proposed in this study. This improved stall
model is shown to provide a better correlationwith experimental stall
data.

Using themodified stall model, the response characteristics of a 2-
D airfoil undergoing pitching and plunging motion in a pulsating
oncoming flow are analyzed to study the effects of dynamic stall. The
results of this study show that significant difference is observed in the
response of airfoil for dynamic stall and quasi-steady aerodynamic
models. The results of this study also show that dynamic stall in
association with aeroelastic couplings above a certain level leads to
bounded chaotic motion of the airfoil.

Appendix: Aerodynamic Characteristics of Airfoil

I. Symmetrical Airfoil [17]

Static lift data:

Czl
� p0�; p0 � 0:10�1 �M81�=

���������������������
�1 �M21�

p
(A1)

�Cz �
�
0 � < �d
�p0 � p1��� � �d� � c1fexp�h1�� � �d�� � 1g � � �d

(A2)

where

�d � 15�1�M21� p1 � 0:1M41 c1 � 0:7�1�M1�
h1 ��0:5� �1:5 �M1�M21

Static moment data:

Cml
� 0:0 (A3)

�Cm �
�
0 � < �d
c2fexp�h2�� � �d�� � 1g � � �d

(A4)

where

c2 ��0:09 � 0:08 exp��30�M1 � 0:6�2�
h2 ��0:4 � 0:21tan�1�22�0:45 �M1��

Static drag data:

Cd0
� 0:008 (A5)

�Cd �
�
0 � < �d
�Cd0

� 0:30��1 � ���max � ��=��max � �d��ug � � �d

(A6)

where

�max � 25 �Mach � 18 � 2tan�1�4M1�
u� ��max � �d�=��Mach � �d�

II. Unsymmetrical Airfoil [13]

Static lift data:

Czl
� 0:11831�eff (A7)

Static moment data:

Cml
� 0:001666�eff (A8)
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